

General Certificate of Education

Mathematics 6360

MPC3 Pure Core 3

Mark Scheme

2005 examination – June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to mark scheme and abbreviations used in marking

Μ	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
Е	mark is for explanation					
or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within FW further work					
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	OE	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks NOS not on scheme					
-x EE	deduct x marks for each error G graph					
NMS	no method shown c candidate					
PI	possibly implied sf significant figure(s)					
SCA	substantially correct approach	dp	decimal place(s)			

Application of Mark Scheme

mark as in scheme

zero marks unless specified otherwise

No method shown:

Correct answer without working Incorrect answer without working

More than one method / choice of solution:

2 or more complete attempts, neither/none crossed outmark both/all fully and award the mean
mark rounded down
award credit for the complete solution only1 complete and 1 partial attempt, neither crossed outaward credit for the complete solution onlyCrossed out workdo not mark unless it has not been replacedAlternative solution using a correct or partially correct methodaward method and accuracy marks as
appropriate

MPC3		1		
Q	Solution	Marks	Total	Comments
1(a)	$y = x \sin 2x$			
	$\frac{dy}{dx} = x2\cos 2x + \sin 2x$	M1		product rule
	dx	A1,A1	3	
	(2)	AI,AI	3	
(b)(i)	$y = \left(x^2 - 6\right)^4$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4\left(x^2 - 6\right)^3 \left(2x\right) \text{(or better)}$	M1A1	2	M1 for $(x^2 - 6)^3$
	dx = (x + y) (2x) (x + y)	WITAI	2	$\begin{bmatrix} M1 & 101 & (x & -6) \end{bmatrix}$
	$\left(8u(u^2-\epsilon)^3 du - (u^2-\epsilon)^4\right)$	M1		for $c(x^2-6)^4$ if correct attempt for $\frac{1}{k}(x^2-6)^4$ at 'by parts'
(11)	$\int 8x(x^2 - 6)^3 dx = (x^2 - 6)^4$ $\int = \frac{1}{8}(x^2 - 6)^4 (+c)$	M1		attempt
	• 1			for $\frac{1}{L}(x^2-6)^4$ at 'by parts'
	$\int = \frac{1}{8} (x^2 - 6)^{-1} (+c)$	A1		$\frac{101}{k} \frac{1}{k} $
		A1	3	M1A0 for $k = 8$
			3	$\frac{101}{\text{Or}}$ $\frac{k-8}{10}$
				$\left(x^{2}-6\right)^{3} = x^{6}-18x^{4}+108x^{2}-216 \text{ (M1A1)}$ $\int x(x^{2}-6)^{3} = \frac{x^{8}}{8}-3x^{6}+27x^{4}-108x^{2} \text{ (A1)}$
				$\int (2 c)^3 x^8 = 2.6 \cdot 27.4 \cdot 100.2 \cdot (41)$
				$\int x(x^2-6) = \frac{-3x^3+2}{8} - \frac{108x^2}{41}$
	Total		8	
2()	6 - 1 - 6	M1		correct order
2(a)	$fg = h = \frac{6}{x+3} - 2$	A1	2	
	$\left(=\frac{6-2x-6}{x+3} = \frac{-2x}{x+3}\right)$			
				Or:
(b)(i)	$\boldsymbol{x} = \frac{-2y}{y+3}$			$y = \frac{6}{x+3} - 2$
	<i>y</i> +3			
	xy + 3x = -2y			$y+2 = \frac{6}{x+3}$
	xy + 3x = -2y $y(x+2) = -3x$	M1		attempt to isolate x or y $x+3$
	y(x + 2) = -3x	1411		$x+3 = \frac{6}{y+2}$
	$h^{-1}(x) = y = \frac{-3x}{1-3x}$	M1		$x \Leftrightarrow y$ $x = \frac{6}{y+2} - 3$
	$h^{-1}(x) = y = \frac{-3x}{(x+2)}$	A1	3	y + 2
			5	$h^{-1}(x) = \frac{6}{x+2} - 3$
				$n(x) - \frac{1}{x+2} - 3$
(ii)	(Range) $\neq -3$	B1	1	
	Total		6	

MPC3 (cont)

Q	Solution	Marks	Total	Comments
3(a)	$\frac{1}{4}e^{4x}$	B1	1	
	4			
(b)	$\int e^{4x} (2x+1) \mathrm{d}x$			
		M1		by parts
	1	1011		by parts
	$du = 2 \qquad \qquad v = \frac{1}{4}e^{4x}$			
	$=\frac{1}{4}(2x+1)e^{4x}-\frac{1}{2}\int e^{4x}\mathrm{d}x$	M1		Their $(uv - \int v du)$
	$=\frac{1}{4}(2x+1)e^{4x}-\frac{1}{8}e^{4x}(+c)$	A1	3	
	$u = 1 + \ln x$			
	$\frac{du}{dx} = \frac{1}{x} \text{ or } \frac{dx}{du} = e^{u-1}$	B1		
		M1		in terms of <i>u</i> only
	$\int = \int u \mathrm{d}u = \frac{u^2}{2} (+c)$	A1		
	$=\frac{(1+\ln x)^2}{2}(+c)$	A1	4	
	Total		8	
4(a)	$\tan^2 x = \sec x + 11$			Or attempt to form quadratic in \cos^2
+(a)	$\tan^{2} x = \sec^{2} x + 11$ $\sec^{2} x - 1 = \sec x + 11$	M1		Or attempt to form quadratic in $\cos^2 \tan^2 x = \sec^2 x - 1$
	$\sec^2 x - \sec x - 12 = 0$	Al	2	AG
(b)	$(\sec x - 4)(\sec x + 3) = 0$	M1		attempt at solving quadratic
	$\sec x = 4, -3$	A1F		
	$\therefore \cos x = \frac{1}{4}, -\frac{1}{3}$	A1	3	AG; (A0 if no use of $\cos x = \frac{1}{\sec x}$)
(c)	<i>x</i> = 76°, 284°	B1		2 correct
	$x = 109^{\circ}, 251^{\circ}$ (or better)	B1,B1	3	other answers
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5	(-1 each extra in range)
				If radians $x = 1.32, 4.97$
				1.91, 4.37
				B1 any 2 correct
	лг ()		Q	B1 other 2 correct
	Total		8	

MPC3	(cont)

Q	Solution	Marks	Total	Comments
5(a)	$2e^{x} = 5$			
	$2e^{x} = 5$ $e^{x} = \frac{5}{2}$	M1		(exact)
	$x = \ln \frac{5}{2}$ (0.916)	A1	2	(A0 if further wrong work)
(b)(i)	$2e^{x} + 5e^{-x} = 7$			
	$2e^{2x} + 5 = 7e^x$	M1		Dealing with e^{-x}
	$2y^2 - 7y + 5 = 0$	A1	2	AG
(ii)	(2y-5)(y-1)=0	M1		attempt to solve
				$y = \frac{5}{2}, 1$ (SC B1)
	$x = \ln \frac{5}{2}$	A1		$e^x = \frac{5}{2}$
	$x = 0 (\text{ or } \ln 1)$	A1	3	$e^{x} = 1$
	Total		7	

MPC3 (cont)

Q	Solution	Marks	Total	Comments
6(a)(i)		M1 A1	2	Shape symmetrical about <i>y</i> axis all correct
(ii)	$V = (k) \int (4 - x^2)^2 (dx)$	M1		
	$=(\pi)\int 16 - 8x^2 + x^4 dx$	B1		expanding bracket
	$=(\pi)\left[16x - \frac{8x^{3}}{3} + \frac{x^{5}}{5}\right]$	M1		correctly integrating 2 of their terms
	$=\pi\frac{256}{15}$	A1	4	
(b)(i)		M1 A1	2	modulus graph shape
(ii)	$\begin{vmatrix} 4 - x^2 \end{vmatrix} = 3$ $4 - x^2 = 3 \implies x = \pm 1, -1$	M1 A1		attempt at solving a correct equation 2 correct
	$4 - x^2 = 3 \implies x = \pm 1, -1$ $4 - x^2 = -3 \implies x = \pm \sqrt{7}$ (or exact equivalent)	A1	3	2 correct
(iii)	$-\sqrt{7} < x < -1$ $1 < x < \sqrt{7}$	B1F		condone $\sqrt{7} = 2.6$ (or better)
	$1 < x < \sqrt{7}$	B1F	2	
	Total		13	

MPC3	(cont)
------	--------

Q	Solution	Marks	Total	Comments
7(a)	$\frac{\frac{\pi}{2}}{-\frac{\pi}{2}}$	B1 B1	2	shape asymptotes (shown or stated) ($\frac{\pi}{2}$ seen)
(b)(i)		B1 B1	2	sketch of $2x - 1$ correct
(ii)	$\tan^{-1} x - 2x + 1 = 0$ f(0.8) = 0.07 f(0.9) = -0.07	M1		
(c)	change of sign \therefore root ($x_1 = 0.8$) $x_2 = 0.837(37)$	A1 M1 A1	2	allow +ve, -ve A0 if f(0.8), f(0.9) wrong attempt at x_2 for x_2
	$x_3 = 0.85$ Total	A1	3 9	for x ₃

MPC3 (cont)

Q	Solution	Marks	Total	Comments
8(a)	Stretch (parallel) to <i>x</i> -axis	B1		
	Scale factor $\frac{1}{2}$	B1		
	2			
	Translate $\begin{pmatrix} 0\\ 3 \end{pmatrix}$	B1, B1	4	
(b)	<u>x y</u>			
	2.25 93.017	M1		Use of mid-ordinate rule
	2.75 247.692	A1		correct <i>x</i>
	3.25 668.142 3.75 1811.042			
	5.75 1011.072	A1		$3 \operatorname{correct} y (2 \operatorname{sf})$
	Area = 0.5×2819.893			
	= 1410	A1	4	CAO
(c)	$A = \int e^{2x} + 3 dx$	M1		(+ attempt to integrate)
	$A = \int e^{2x} + 3 dx$ $= \left[\frac{1}{2}e^{2x} + 3x\right]$	A1		(correct)
	$\left(\frac{1}{2}e^{8}+12\right)-\left(\frac{1}{2}e^{4}+6\right)$	m1		Substitute 2,4 into their
				•
	$=\frac{1}{2}(e^{8}-e^{4})+6$	A1	4	$\left(\frac{1}{2}e^4\left(e^4-1\right)+6\right)$
	$x_1 = 2$, $y_1 = e^4 + 3$ (57.6)			
(d)	$x_1 = 2, y_1 = e^8 + 3 (37.0)$ $x_2 = 4, y_2 = e^8 + 3 (2980)$	M1		Attempt at $y(2)$ or $y(4)$
	$x_2 = 1, y_2 = 0 + 5 (2000)$	A1		Both correct
	Area of $A + B =$			
	$2\left(e^{8}-e^{4}\right)+2\left(e^{8}+3\right)$	M1		Attempt to find correct area
	Area $B =$			
	$4e^8 - 2e^4 + 6$			
	$-\frac{1}{2}e^{8}+\frac{1}{2}e^{4}-6$			
	$=\frac{7}{2}e^{8}-\frac{3}{2}e^{4}$	A1	4	
	Total		16	
	Total		75	